skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cho, Soo-Yeon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Colloidal single-walled carbon nanotubes (SWCNTs) oer a promising platform for the nanoscale engineering of molecular recognition. Optical sensors have been recently designed through the modification of noncovalent corona phases (CPs) of SWCNTs through a phenomenon known as corona phase molecular recognition (CoPhMoRe). In CoPhMoRe constructs, DNA CPs are of great interest due to the breadth of the design space and our ability to control these molecules with sequence specificity at scale. Utilizing these constructs for metal ion sensing is a natural extension of this technology due to DNA’s well-known coordination chemistry. Additionally, understanding metal ion interactions of these constructs allows for improved sensor design for use in complex aqueous environments. In this work, we study the interactions between a panel of 9 dilute divalent metal cations and 35 DNA CPs under the most controlled experimental conditions for SWCNT optical sensing to date. We found that best practices for the study of colloidal SWCNT analyte responses involve mitigating the eects of ionic strength, dilution kinetics, laser power, and analyte response kinetics. We also discover that SWCNT with DNA CPs generally oers two unique sensing states at pH 6 and 8. The combined set of sensors in this work allowed for the dierentiation of Hg2+, Pb2+, Cr2+, and Mn2+. Finally, we implemented Hg2+ sensing in the context of portable detection within fish tissue extract, demonstrating nanomolar level detection. 
    more » « less
  2. Abstract Nanosensors have proven to be powerful tools to monitor single cells, achieving spatiotemporal precision even at molecular level. However, there has not been way of extending this approach to statistically relevant numbers of living cells. Herein, we design and fabricate nanosensor array in microfluidics that addresses this limitation, creating a Nanosensor Chemical Cytometry (NCC). nIR fluorescent carbon nanotube array is integrated along microfluidic channel through which flowing cells is guided. We can utilize the flowing cell itself as highly informative Gaussian lenses projecting nIR profiles and extract rich information. This unique biophotonic waveguide allows for quantified cross-correlation of biomolecular information with various physical properties and creates label-free chemical cytometer for cellular heterogeneity measurement. As an example, the NCC can profile the immune heterogeneities of human monocyte populations at attomolar sensitivity in completely non-destructive and real-time manner with rate of ~600 cells/hr, highest range demonstrated to date for state-of-the-art chemical cytometry. 
    more » « less